FoPra Beluga Challenge - Reinforcement Learning v1.0
Deep Reinforcement Learning solution for the Beluga Challenge shipping container optimization problem using PPO and MCTS
rl.training.trainer.Trainer Member List

This is the complete list of members for rl.training.trainer.Trainer, including all inherited members.

__init__(self, Env env, PPOAgent ppo_agent, mcts_params=None, debug=False)rl.training.trainer.Trainer
_format_parameters(self, action, params)rl.training.trainer.Trainerprotected
_save_results_to_file(self, problem, steps, max_steps, is_terminal, action_trace, action_counts, optimized_steps, original_steps, execution_time, formatted_time)rl.training.trainer.Trainerprotected
action_mappingrl.training.trainer.Trainer
avg_rewardsrl.training.trainer.Trainer
best_scorerl.training.trainer.Trainer
debugrl.training.trainer.Trainer
envrl.training.trainer.Trainer
episode_rewardsrl.training.trainer.Trainer
epsilon_decayrl.training.trainer.Trainer
epsilon_endrl.training.trainer.Trainer
epsilon_startrl.training.trainer.Trainer
evaluateModel(self, n_eval_episodes=10, max_steps_per_episode=200, plot=False)rl.training.trainer.Trainer
evaluateProblem(self, problem, max_steps=2000, loop_detection=True, exploration_rate=0.1, save_to_file=False)rl.training.trainer.Trainer
get_valid_actions(self, obs)rl.training.trainer.Trainer
invalid_action_countsrl.training.trainer.Trainer
learn_itersrl.training.trainer.Trainer
mctsrl.training.trainer.Trainer
ppo_agentrl.training.trainer.Trainer
score_historyrl.training.trainer.Trainer
steps_per_episoderl.training.trainer.Trainer
total_stepsrl.training.trainer.Trainer
train(self, n_episodes=2000, N=5, max_steps_per_episode=200, train_on_old_models=False, start_learn_after=500, use_permutation=False)rl.training.trainer.Trainer